Search results for "Fracture Toughness"
showing 10 items of 67 documents
Micromechanics of “raspberry” morphology in PPE/SAN polymer blends compatibilized with linear ABC triblock terpolymers
2015
Abstract The effect of compatibilization with a symmetrical polystyrene- block -polybutadiene- block -poly(methyl methacrylate) (SBM) triblock terpolymer on the morphological and mechanical properties (specifically toughness) of immiscible poly(2,6-dimethyl-1,4-phenylene ether)/poly(styrene- co -acrylonitrile) (PPE/SAN) blends with different blend (w/w) ratios is investigated. We study the effect of blend viscosity on the localization of the compatibilizer at the blend interface, influencing the mechanical properties of the macroscopic material. The impact of the specific morphology of the blends, known as “raspberry morphology”, on the final material will be explained using thermomechanica…
Correlation of epoxy material properties with the toughening effect of fullerene-like WS2 nanoparticles
2016
Abstract This work deals with the toughening effect of inorganic, fullerene-like WS2 (IF-WS2) nanoparticles (NPs) on epoxy. It has been hypothesized that this toughening effect depends on the epoxy’s cross-link density, its molecular defect fraction or its reference fracture toughness K Ic . Seven different epoxy systems were filled with 0.5% laboratory-made IF-WS2 NPs by mass and investigated in order to analyze which material properties are determining the toughening effect. These NPs were similar to commercially available IF-WS2 NPs, but their agglomerates could not be broken up as successfully and they yielded less toughening effect. The cross-link density of the epoxies measured via dy…
Photoelastic stress analysis assisted evaluation of fracture toughness in hydrothermally aged epoxies
2014
The present work has investigated the fracture toughness of a model DGEBA epoxy system subject to Hidro-Thermal aging. A Photoelastic Stress Analysis technique has been implemented, showing the evolution of stresses arising throughout the water uptake process due to the non-uniform swelling of the material. Gravimetric and Dynamic Mechanical Thermal Analyses have further complemented the characterization, showing the onset of plasticization effects with aging. The correlation of all previous characterizations has allowed to conclude that an increase of KIC fracture toughness is obtained at the fully saturated condition. In particular Photoelasticity has also revealed the onset of relevant s…
Crack dynamics and crack surfaces in elastic beam lattices
1998
The dynamics of propagating cracks is analyzed in elastic two-dimensional lattices of beams. At early times, inertia effects and static stress enhancement combine so that the crack-tip velocity is found to behave as t1/7. At late times a minimal crack-tip model reproduces the numerical simulation results. With no disorder and for fast loading, a “mirror-mist-mirror” crack-surface pattern emerges. Introduction of disorder leads, however, to the formation of the “mirror-mist-hackle”–type interface typical in many experimental situations. Peer reviewed
Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials
2017
Controlled aggregation of polymer-stabilized calcium silicate hydrate nanoparticles leads to elastic cementitious materials.
High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites
2014
Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO 3 ) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well-defi ned organic–inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO 2 nanoparticles and a 3-hydroxytyramine…
Dependence of fracture toughness of composite laminates on interface ply orientations and delamination growth direction
2004
A critical review has been performed of the published experimental research concerning delamination onset and growth in composite laminate interfaces of different lay-ups under single-mode loadings. It was found that, depending on the loading mode and interface lay-up, the traditional fracture toughness characterization by unidirectionally reinforced composite tests can lead to marked under- or overestimation of material resistance to crack growth. Empirical models of fracture toughness as a function of delamination front orientation with respect to reinforcement directions of the adjacent laminae have been validated and their applicability range established.
Thermoelastic Stress Analysis of modified Transverse Cut Tensile composite specimens under pure Mode II fatigue delamination
2018
The present work investigates the behaviour of a Transvers Crack Tensile (TCT) specimen undergoing fatigue loading, by means of a Thermoelastic Stress Analysis (TSA) experimental setup. The TCT is a tensile composite specimen where a number of internal layers are cut through the beam width. The presence of such transverse notch favours the formation of interlaminar Mode II delaminations, starting from the notch tips and propagating between the cut and continuous plies. In this work, a modification is adopted to the classic TCT specimen, where insert films, mimicking artificial delaminations, are laid across the notch tips. This is done with the purpose to favour a pure Mode II and a symmetr…
MoSi2 laser cladding—A new experimental procedure: double-sided injection of MoSi2 and ZrO2
2003
International audience; In the last decade, development of low density advanced material systems for service at temperatures up to 1300 °C was one of the goals of many researches. This kind of material should mainly have moderate fracture toughness and should exhibit oxidation resistant behaviour at low and intermediate temperature. One of the most studied materials continues to be the intermetallic compound MoSi2. The molybdenum disilicide has been considered as an attractive candidate due to its melting point (2030 °C) and excellent oxidation resistance at high temperatures. The main problem associated with the MoSi2 layer synthesized using laser beam is the layer fragility. To avoid this…
Wear mechanisms and residual stresses in alumina-based laminated cutting tools
2005
Abstract The outstanding performances of the Al2O3 cutting tools in terms of potential cutting speed can lead to substantial economies in the machining of metallic materials. Nevertheless, their widespread use is limited by some drawbacks such as the tendency to edge chipping and to the propagation of microcracks, which can lead to premature failures. These shortcomings are due to the intrinsic low toughness of the ceramic material, which is in turn related to its characteristics non-metallic bonds. A well-recognised method of increasing the toughness of brittle materials is the introduction of surface compressive stresses, which can be obtained through a suitable lamination geometry of the…